Рабочая программа учебной дисциплины ОУД.03. "Математика" разработана на основе:
Закона РФ «Об образовании в РФ» №273 от 29.12.12;
Приказа Минобрнауки России от 14.06.2013 № 464 №Об утверждении Порядка
организации и осуществления образовательной деятельности по образовательным
программам среднего профессионального образования№;
Приказа Минобрнауки России от 15.12.2014 №1580 «О внесении изменений в порядок
организации и осуществления образовательной деятельности по образовательным
программам среднего профессионального образования, утвержденного Приказом
Министерства образования и науки РФ от 14.06.2013 №464»;
Письма Минобрнауки России от 17.03.2015 № 06-259 «О направлении доработанных
рекомендаций по организации получения среднего общего образования в пределах освоения
образовательных программ среднего профессионального образования на базе основного
общего образования с учетом требований федеральных государственных образовательных
стандартов и получаемой профессии или специальности среднего профессионального
образования»;
Письма Минобрнауки России от 03.08.2015 № 08-1189 «О направлении информации»
(вместе с «Методическими рекомендациями по воспитанию антикоррупционного
мировоззрения у школьников и студентов»);
ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО СТАНДАРТА
СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ (в ред. Приказов Минобрнауки России от 29.12.2014
N 1645, от 31.12.2015 N 1578)
МР по организации получения СОО в пределах освоения образовательных программ
СПО на базе ООО с учетом требований ФГОС и получаемой профессии и специальности
СПО<Письмо> Минобрнауки России от 17.03.2015 N 06-259
Примерной программы общеобразовательной учебной дисциплины для ПОО (2015 г.)
Уточнений ФИРО по реализации СОО при СПО от 25.05.2017г.
Устава ГАПОУ СО «Полипрофильный техникум им. О.В. Терѐшкина» № 788-ПП
09.11.2016г;
Положения об организации и проведения практики ГАПОУ СО «ПТ им. О.В.
Терѐшкина»;
Положения об очном отделении ГАПОУ СО «ПТ им. О.В. Терѐшкина» №028/ОД от
31.08.15;
Положения о самостоятельной работе ГАПОУ СО «ПТ им. О.В. Терѐшкина» №075/ОД
от 29.12.17г;
Положения по планированию, организации и проведению лабораторных, практических
работ ГАПОУ СО «ПТ им. О.В. Терѐшкина» №028/ОД от 31.08.15;
Положения о текущем контроле и промежуточной аттестации студентов ГАПОУ СО
«ПТ им. О.В. Терѐшкина» №041/ОД от 01.09.2017г;
Порядка проведения ГИА студентов в ГАПОУ СО «ПТ им. О.В. Терѐшкина» в 2017-18
уч.году №041/ОД от 01.09.2017г;
Положения о формировании КУМО ОПОП ГАПОУ СО «ПТ им. О.В. Терѐшкина» №
78/ОД от 29.12.17г.
Организация-разработчик: ГАПОУ СО «Полипрофильный техникум им. О.В. Терѐшкина»
2
СОДЕРЖАНИЕ
стр.
Паспорт программы
Раздел I Математика: Алгебра и начала
математического анализа
4
Структура и содержание раздела I
7
Условия реализации учебной дисциплины
16
Контроль и оценка результатов освоения
учебной дисциплины
18
Раздел II Математика: Геометрия
24
Структура и содержание раздела II
24
Условия реализации учебной дисциплины
30
Контроль и оценка результатов освоения
учебной дисциплины
32
4
3
1. Паспорт программы учебной дисциплины
ОУД.03 «Математика»
Раздел I. «Алгебра и начала математического анализа»
Область применения программы
Рабочая программа учебной дисциплины ОУД.03 «Математика» является
частью общеобразовательного цикла основной профессиональной образовательной
программы в соответствии с ФГОС по профессиям:
15.01.32 Оператор станков с программным управлением;
15.01.35 Мастер слесарных работ.
1.1.
1.2.
Место дисциплины в структуре основной профессиональной
образовательной программы учебная дисциплина «Математика» изучается в
общеобразовательном цикле учебного плана ОПОП СПО на базе основного общего
образования с получением среднего общего образования (ППКРС, ППССЗ). В учебных
планах ППКРС, ППССЗ учебная дисциплина «Математика» входит в состав общих
общеобразовательных учебных дисциплин, формируемых из обязательных предметных
областей ФГОС среднего общего образования, для профессий СПО или специальностей
СПО соответствующего профиля профессионального образования.
1.3 Цели и задачи учебной дисциплины – требования к результатам освоения
дисциплины:
формирование представлений о математике как универсальном языке науки,
средстве моделирования явлений и процессов, об идеях и методах математики;
развитие
логического
мышления,
пространственного
воображения,
алгоритмической культуры, критичности мышления на уровне, необходимом для
будущей профессиональной деятельности, для продолжения образования и
самообразования;
овладение математическими знаниями и умениями, необходимыми в
повседневной жизни, для изучения смежных естественно-научных дисциплин на
базовом уровне и дисциплин профессионального цикла, для получения образования в
областях, не требующих углубленной математической подготовки;
воспитание средствами математики культуры личности, понимания значимости
математики для научно-технического прогресса, отношения к математике как к части
общечеловеческой культуры через знакомство с историей развития математики,
эволюцией математических идей.
Основу программы составляет содержание, согласованное с требованиями
федерального компонента государственного стандарта среднего (полного) общего
образования базового уровня.
Математика является фундаментальной общеобразовательной дисциплиной со
сложившимся устойчивым содержанием и общими требованиями к подготовке
обучающихся. Реализация общих целей изучения математики традиционно формируется
в четырех направлениях – методическое (общее представление об идеях и методах
математики), интеллектуальное развитие, утилитарно-прагматическое направление
(овладение необходимыми конкретными знаниями и умениями) и воспитательное
воздействие.
Изучение математики как профильного учебного предмета обеспечивается:
– выбором различных подходов к введению основных понятий;
4
– формированием системы учебных заданий, обеспечивающих эффективное
осуществление выбранных целевых установок;
– обогащением спектра стилей учебной деятельности за счет согласования с ведущими
деятельностными характеристиками выбранной профессии.
Профильная составляющая отражается в требованиях к подготовке обучающихся в
части:
– общей системы знаний: содержательные примеры использования математических идей
и методов в профессиональной деятельности;
– умений: различие в уровне требований к сложности применяемых алгоритмов;
– практического использования приобретенных знаний и умений: индивидуального
учебного опыта в построении математических моделей, выполнении исследовательских
и проектных работ.
Таким образом, программа ориентирует на приоритетную роль процессуальных
характеристик учебной работы, зависящих от профиля профессиональной подготовки,
акцентирует значение получения опыта использования математики в содержательных и
профессионально значимых ситуациях по сравнению с формально-уровневыми
результативными характеристиками обучения.
Перечень тем в курсе математики является общим для всех профилей получаемого
профессионального образования и при всех объемах учебного времени независимо от
того, является ли предмет базовым или профильным.
Освоение содержания учебной дисциплины «Математика» обеспечивает
достижение студентами следующих результатов:
• личностных:
−− сформированность представлений о математике как универсальном языке науки,
средстве моделирования явлений и процессов, идеях и методах математики;
−− понимание значимости математики для научно-технического прогресса,
сформированность отношения к математике как к части общечеловеческой культуры
через знакомство с историей развития математики, эволюцией математических идей;
−− развитие логического мышления, пространственного воображения, алгоритмической
культуры, критичности мышления на уровне, необходимом для будущей
профессиональной деятельности, для продолжения образования и самообразования;
−− овладение математическими знаниями и умениями, необходимыми в повседневной
жизни, для освоения смежных естественно-научных дисциплин и дисциплин
профессионального цикла, для получения образования в областях, не требующих
углубленной математической подготовки;
− готовность и способность к образованию, в том числе самообразованию, на протяжении
всей жизни; сознательное отношение к непрерывному образованию как условию
успешной профессиональной и общественной деятельности;
− готовность и способность к самостоятельной творческой и ответственной деятельности;
− готовность к коллективной работе, сотрудничеству со сверстниками в образовательной,
общественно полезной, учебно-исследовательской, проектной и других видах
деятельности;
− отношение к профессиональной деятельности как возможности участия в решении
личных, общественных, государственных, общенациональных проблем;
• метапредметных:
−− умение самостоятельно определять цели деятельности и составлять планы
деятельности; самостоятельно осуществлять, контролировать и корректировать
деятельность; использовать все возможные ресурсы для достижения поставленных целей
и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
5
−− умение продуктивно общаться и взаимодействовать в процессе совместной
деятельности, учитывать позиции других участников деятельности, эффективно
разрешать конфликты;
−− владение навыками познавательной, учебно-исследовательской и проектной
деятельности, навыками разрешения проблем; способность и готовность к
самостоятельному поиску методов решения практических задач, применению различных
методов познания;
−− готовность и способность к самостоятельной информационно-познавательной
деятельности, включая умение ориентироваться в различных источниках информации,
критически оценивать и интерпретировать информацию, получаемую из различных
источников;
−− владение языковыми средствами: умение ясно, логично и точно излагать свою точку
зрения, использовать адекватные языковые средства;
−− владение навыками познавательной рефлексии как осознания совершаемых действий и
мыслительных процессов, их результатов и оснований, границ своего знания и незнания,
новых познавательных задач и средств для их достижения;
−− целеустремленность в поисках и принятии решений, сообразительность и интуиция,
развитость пространственных представлений; способность воспринимать красоту и
гармонию мира;
• предметных:
−− сформированность представлений о математике как части мировой культуры и месте
математики в современной цивилизации, способах описания явлений реального мира на
математическом языке;
−− сформированность представлений о математических понятиях как важнейших
математических моделях, позволяющих описывать и изучать разные процессы и явления;
понимание возможности аксиоматического построения математических теорий;
−− владение методами доказательств и алгоритмов решения, умение их применять,
проводить доказательные рассуждения в ходе решения задач;
−− владение стандартными приемами решения рациональных и иррациональных,
показательных, степенных, тригонометрических уравнений и неравенств, их систем;
использование готовых компьютерных программ, в том числе для поиска пути решения и
иллюстрации решения уравнений и неравенств;
−− сформированность представлений об основных понятиях математического анализа и
их свойствах, владение умением характеризовать поведение функций, использование
полученных знаний для описания и анализа реальных зависимостей;
−− владение основными понятиями о плоских и пространственных геометрических
фигурах, их основных свойствах; сформированность умения распознавать геометрические
фигуры на чертежах, моделях и в реальном мире; применение изученных свойств
геометрических фигур и формул для решения геометрических задач и задач с
практическим содержанием;
−− сформированность представлений о процессах и явлениях, имеющих вероятностный
характер, статистических закономерностях в реальном мире, основных понятиях
элементарной теории вероятностей; умений находить и оценивать вероятности
наступления событий в простейших практических ситуациях и основные характеристики
случайных величин;
−− владение навыками использования готовых компьютерных программ при решении
задач.
6
2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ
ОУД.03 МАТЕМАТИКА
2.1 СОДЕРЖАНИЕ
Введение
Математика в науке, технике, экономике, информационных технологиях и практической
деятельности. Цели и задачи изучения математики в учреждениях начального и среднего
профессионального образования.
Алгебра
Развитие понятия о числе
Целые и рациональные числа. Действительные числа. Приближенные вычисления.
Корни, степени и логарифмы
Корни и степени. Корни натуральной степени из числа и их свойства. Степени с
рациональными показателями, их свойства. Степени с действительными показателями.
Свойства степени с действительным показателем.
Логарифм. Логарифм числа. Основное логарифмическое тождество. Десятичные и
натуральные логарифмы. Правила действий с логарифмами. Переход к новому
основанию.
Преобразование
алгебраических
выражений.
Преобразование
рациональных,
иррациональных степенных, показательных и логарифмических выражений.
Основы тригонометрии
Радианная мера угла. Вращательное движение. Синус, косинус, тангенс и котангенс
числа. Основные тригонометрические тождества, формулы приведения. Синус, косинус
и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы
половинного угла. Преобразования суммы тригонометрических функций в произведение
и произведения в сумму. Выражение тригонометрических функций через тангенс
половинного аргумента. Преобразования простейших тригонометрических выражений.
Простейшие тригонометрические уравнения. Решение тригонометрических уравнений.
Простейшие тригонометрические уравнения и неравенства. Арксинус, арккосинус,
арктангенс числа. Простейшие тригонометрические уравнения. Тригонометрические
уравнения. Решение тригонометрических уравнений.
Функции, их свойства и графики
Функции. Область определения и множество значений; график функции, построение
графиков функций, заданных различными способами.
Свойства
функции:
монотонность,
четность,
нечетность,
ограниченность,
периодичность. Промежутки возрастания и убывания, наибольшее и наименьшее
значения, точки экстремума. Графическая интерпретация. Примеры функциональных
зависимостей в реальных процессах и явлениях.
Степенные, показательные, логарифмические и тригонометрические функции
Определения функций, их свойства и графики.
Обратные тригонометрические функции.
Преобразования графиков. Параллельный перенос, симметрия относительно осей
координат и симметрия относительно начала координат, симметрия относительно
прямой y = x, растяжение и сжатие вдоль осей координат.
Уравнения и неравенства
уметь:
решать рациональные, показательные, логарифмические, тригонометрические
уравнения, сводящиеся к линейным и квадратным, а также аналогичные
неравенства и системы;
использовать графический метод решения уравнений и неравенств;
7
изображать на координатной плоскости решения уравнений, неравенств и систем с
двумя неизвестными;
составлять и решать уравнения и неравенства, связывающие неизвестные величины в
текстовых (в том числе прикладных) задачах.
НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА
Производная. Понятие о производной функции, еѐ геометрический и физический смысл.
Уравнение касательной к графику функции. Производные суммы, разности,
произведения, частного. Производные основных элементарных функций. Применение
производной к исследованию функций и построению графиков. Производные обратной
функции и композиции функции.
Примеры использования производной для нахождения наилучшего решения в
прикладных задачах. Вторая производная, ее геометрический и физический смысл.
Применение производной к исследованию функций и построению графиков.
Нахождение скорости для процесса, заданного формулой и графиком.
Первообразная и интеграл. Применение определенного интеграла для нахождения
площади криволинейной трапеции. Формула Ньютона—Лейбница. Примеры
применения интеграла в физике и геометрии. Использовать приобретенные знания и
умения в практической деятельности и повседневной жизни:
для построения и исследования простейших математических моделей.
2.2. Рекомендуемое количество часов на освоение учебной дисциплины:
Общее
количество
часов
Раздел I
алгебра и
начала анализа
Раздел II
геометрия
Максимальной учебной нагрузки
обучающегося
Обязательной аудиторной
(теоретических занятий) всего и в том
числе:
практические занятия
285
175
110
285
175
110
173
100
73
контрольные работы
26
20
6
лекции
86
55
31
Вид учебной работы
2.1.1 Объѐм учебной дисциплины и виды учебной работы
Вид учебной работы
Максимальная учебная нагрузка (всего)
Обязательная аудиторная учебная нагрузка (всего)
в том числе:
практические занятия
лекции
контрольные работы
Количество
часов
175
175
99
56
20
8
Итоговая аттестация в форме
экзамена (письменная экзаменационная
работа)
Для промежуточной аттестации и текущего контроля знаний созданы фонды
оценочных средств (ФОС), инструкции для студентов и преподавателей, рекомендации
для подготовки студентов к промежуточной аттестации.
КУРС МАТЕМАТИКИ
285 часов
Из них раздел I Математика: «Алгебра и начала анализа» 175 часов
Общее количество
часов
175
I Курс
II Курс
80
95
Распределение часов Математики по курсам:
I Курс
Общее
количество
часов
160
Алгебра
Геометрия
80
80
II курс
Общее
количество
часов
125
Алгебра
Геометрия
95
30
Перспективно – тематический план «Алгебра и начала анализа»
№
1
2
3
4
5
№
1
2
3
4
Изучаемая тема I курса
Реабилитационный курс
Показательная функция
Логарифмическая функция
Тригонометрия
Итоговое повторение
Всего часов
Кол.часов
8
18
26
18
10
80
Изучаемая тема II курса
Тригонометрические уравнения
Производная
Интеграл
Итоговое повторение
Всего часов
Кол.часов
24
30
14
27
95
9
2.2. Тематический план и содержание учебной дисциплины «Алгебра и начала
математического анализа»
Наименование тем
1
Алгебра
I Курс
Тема 1.1
Реабилитационный
курс
Тема 1.2.
Показательная
функция
Тема 1.3
Логарифмическая
функция
Тема 1.4
Тригонометрические
формулы.
Содержание учебного материала,
практические работы
2
Введение.
Формулы сокращенного умножения
Линейные уравнения
Квадратные уравнения
Линейные неравенства
Рациональные неравенства
Графики (линая ф-я, квадратичная ф-я)
Степень с рациональным показателем
Контрольная работа №1 (входной контроль)
Степень с действительным показателем
Показательная функция
Показательные уравнения
Практическая работа №1
Показательные неравенства
Практическая работа №2
Обобщение материала темы
Контрольная работа №2
Понятие логарифма (п/р 15мин)
Свойства логарифмов (п/р 20мин)
Формула перехода то одного
основания логарифма к другому (п/р 25мин)
Решение упражнений
Контрольная работа №3
Логарифмическая функция
Логарифмические уравнения
Практическая работа №1
Логарифмические неравенства
Практическая работа №2
Обобщение материала темы
Контрольная работа №4
Радианная мера угла.
Определение синуса, косинуса, тангенса,
котангенса.
Решение упражнений.
Практическая работа №1
Знаки синуса, косинуса, тангенса, котангенса
Зависимость между тригонометрическими
функциями.
Решение упражнений
Практическая работа №2
Тригонометрические тождества
Решение упражнений
Синус, косинус, тангенс и котангенс
отрицательного угла.
Количество
часов
3
80
8
18
26
18
10
Тема 1.5
Итоговое повторение
Алгебра
II курс
Тема 2.1
Тригонометрические
уравнения
Тема 2.2
Производная
Практическая работа №3
Формулы двойного угла.
Формулы приведения
Решение упражнений
Практическая работа №4
Решение упражнений
Контрольная работа №5
Степень с действительным показателем
Показательные уравнения
Показательные неравенства
Логарифмы
Логарифмические уравнения
Логарифмические неравенства
Тригонометрия
Итоговая (годовая) контрольная работа
10
95
Арксинус числа
Уравнение Sinx = а
Практическая работа №1
Арккосинус числа
Уравнение Сosx = а
Практическая работа №2
Арктангенс числа
Уравнение tgx = a, ctgx = a
Практическая работа №3
Решение уравнений
Контрольная работа №1
Тригонометрические уравнения, сводящиеся к
квадратным
Практическая работа №4
Однородные тригонометрические уравнения
Практическая работа №5
Тригонометрические уравнения, решаемые
разложением левой части на множители
Обобщение материала темы
Контрольная работа №2
Понятие производной
Правила дифференцирования
Производная степенной функции
Производные некоторых элементарных функций
Геометрический смысл производной
Механический смысл производной
Контрольная работа №3
Возрастание и убывание функции
Экстремумы функции
Применений производной к исследованию
функций и построению графиков.
Наибольшее и наименьшее значение функции
Обобщение материала
Контрольная работа №4
24
30
11
Тема 2.3
Интеграл
Тема 2.4
Итоговое повторение
Первообразная функция
Правила нахождения первообразной
Понятие интеграла
Вычисление интегралов
Применение интегралов к вычислению
площадей фигур
Контрольная работа №5
Степень с действительным показателем
Показательные уравнения
Показательные неравенства
Логарифмы
Логарифмические уравнения
Логарифмические неравенства
Тригонометрические формулы
Тригонометрические уравнения
Неравенства
Область определения функции
Производная
Интеграл
14
27
Перспективно - тематическое планирование
I курс. Раздел 1. Алгебра и начала математического анализа (80 часов)
Тема № 1: «Реабилитационный курс» (8 часов)
1. Вводный урок.
2. Повторение (решение линейных уравнений)
3. Повторение (решение квадратных уравнений)
4. Повторение (решение квадратных уравнений)
5. Повторение (решение линейных неравенств)
6. Повторение (решение рациональных неравенств)
7. Повторение (построение графиков)
8. Проверочная контрольная работа №1 (входной контроль)
Тема № 2: «Показательная функция» (18 часов)
9. Действительные числа
10. Степень с действительным показателем
11. Решение упражнений (практ. работа №1)
12. Показательная функция.
13. Решение упражнений.
14. Решение упражнений (практ. работа №2)
15. Показательные уравнения.
16. Решение показательных уравнений.
17. Решение показательных уравнений.
18. Решение показательных уравнений.
19. Практическая работа по решению показательных уравнений
20. Показательные неравества.
21. Решение показательных неравенств.
22. Решение показательных неравенств.
23. Решение показательных неравенств.
12
24. Практическая работа по решению показательных неравенств
25. Решение упражнений
26. Контрольная работа №2
Тема № 3: «Логарифмическая функция» (26 часов)
27. Определение логарифма
28. Решение упражнений. (п/р)
29. Свойства логарифмов.
30. Решение упражнений. (п/р)
31. Формула перехода от одного основания логарифма к другому
32. Формула перехода от одного основания логарифма к другому
33. Решение упражнений
(п/р)
34. Решение упражнений
35. Контрольная работа № 3
36. Логарифмическая функция.
37. Решение упражнений. (п/р)
38. Логарифмические уравнения.
39. Решение логарифмических уравнений.
40. Решение логарифмических уравнений.
41. Решение логарифмических уравнений.
42. Практическая работа по решению логарифмических уравнений.
43. Логарифмические неравенства.
44. Решение логарифмических неравенств.
45. Решение логарифмических неравенств.
46. Решение логарифмических неравенств.
47. Решение логарифмических неравенств.
48. Решение логарифмических неравенств.
49. Решение логарифмических неравенств.
50. Практическая работа по решению логарифмических неравенств.
51. Решение упражнений (обобщение материала).
52. Контрольная работа №4
Тема № 4: «Тригонометрические формулы» (18 часов)
53. Радианная мера угла.
54. Определение синуса, косинуса, тангенса, котангенса
55. Решение упражнений
56. Практическая работа №1
57. Знаки синуса, косинуса, тангенса, котангенса.
58. Зависимость между тригонометрическими функциями
59. Решение упражнений.
60. Практическая работа №2.
61. Тригонометрические тождества
62. Решение упражнений
63. Решение упражнений
64. Практическая работа №3.
65. Формулы приведения.
66. Формулы двойного угла.
67. Решение упражнений.
68. Практическая работа №4.
69. Решение упражнений
70. Контрольная работа №5.
13
Тема № 5: «Итоговое повторение» (10 часов)
71. Повторение (степень с действительным показателем)
72. Повторение (решение показательных уравнений)
73. Повторение (решение показательных неравенств)
74. Повторение (логарифмы)
75. Повторение (логарифмические уравнения)
76. Повторение (логарифмические уравнения)
77. Повторение (логарифмические неравенства)
78. Итоговая (годовая) контрольная работа за I курс.
79. Итоговая (годовая) контрольная работа за I курс.
80. Заключительный урок.
II курс.
Алгебра и начала анализа (95 часов)
Тема № 1: «Тригонометрические уравнения» (24 часов)
1. Арксинус числа.
2. Уравнение sin x = a.
3. Решение упражнений.
4. Практическая работа №1.
5. Арккосинус числа.
6. Уравнение cos x = a.
7. Решение упражнений.
8. Практическая работа №2.
9. Арктангенс числа.
10. Уравнение tg x = a и ctg x = a .
11. Решение упражнений.
12. Практическая работа №3.
13. Решение упражнений.
14. Контрольная работа № 1
15. Тригонометрические уравнения, сводящиеся к квадратным.
16. Решение уравнений.
17. Решение уравнений.
18. Практическая работа № 4.
19. Однородные тригонометрические уравнения.
20. Однородные тригонометрические уравнения.
21. Решение уравнений.
22. Практическая работа № 5.
23. Решение упражнений (повторение).
24. Контрольная работа № 2
Тема № 2: «Производная» (30 часов)
25. Производная.
26. Правила дифференцирования.
27. Решение упражнений.
28. Практическая работа № 1.
29. Производная степенной функции.
30. Решение упражнений.
31. Практическая работа № 2.
32. Производные некоторых элементарных функций.
14
33. Производные некоторых элементарных функций.
34. Решение упражнений.
35. Производные элементарных функций.
36. Практическая работа № 3.
37. Решение упражнений.
38. Контрольная работа № 3.
39. Геометрический смысл производной.
40. Геометрический смысл производной
41. Механический смысл производной.
42. Практическая работа № 4.
43. Возрастание и убывание функции.
44. Экстремумы функции.
45. Решение упражнений.
46. Практическая работа № 5.
47. Применение производной к исследованию функций и построению графиков.
48. Решение упражнений.
49. Решение упражнений.
50. Практическая работа №6
51. Наибольшее и наименьшее значения функции.
52. Наибольшее и наименьшее значения функции.
53. Решение упражнений.
54. Контрольная работа №4
Тема № 3: «Интеграл» (14 часов)
55. Первообразная.
56. Правила нахождения первообразных.
57. Решение упражнений.
58. Практическая работа № 1.
59. Вычисление интегралов.
60. Вычисление интегралов.
61. Вычисление интегралов.
62. Практическая работа № 2.
63. Вычисление площадей с помощью интегралов.
64. Вычисление площадей с помощью интегралов.
65. Вычисление площадей с помощью интегралов.
66. Практическая работа № 3.
67. Решение упражнений.
68. Контрольная работа №5
Тема № 4: «Итоговое повторение» (27 часов)
69. Повторение (степени)
70. Повторение (показательные уравнения)
71. Повторение (показательные неравенства)
72. Повторение (логарифмы)
73. Решение упражнений.
74. Повторение (логарифмические уравнения)
75. Повторение (логарифмические неравенства)
76. Повторение (логарифмические неравенства)
77. Решение упражнений.
78. Повторение (тригонометрия)
15
79. Повторение (тригонометрия)
80. Повторение (тригонометрические уравнения.)
81. Повторение (рациональные неравенства)
82. Повторение (область определения ф-и)
83. Повторение (производная тема5)
84. Повторение (производная тема5)
85. Повторение (производная Тема5)
86. Повторение (интеграл тема 6)
87. Повторение (интеграл тема 6)
88. Повторение Тема 7 задачи на %)
89. Повторение (Решений задач по геометрии тема 8)
90. Повторение (Тема 8)
91. Повторение (Тема 8)
92. Повторение (Тема 1- 8)
93. Предэкзаменационная контрольная работа.
94. Предэкзаменационная контрольная работа.
95. Заключительный урок.
3. Условия реализации программы учебной дисциплины
3.1. Требования к материально-техническому обеспечению
Реализация программы учебной дисциплины требует наличия учебного кабинета.
Оборудование учебного кабинета:
- посадочных мест – 30
- стульев – 30
- доска классная – 2
-учебники по алгебре -16
и «Алгебра и начала математического анализа. 10-11»
-источник водоснабжения
Учебные наглядные пособия:
- таблицы:
Квадратов
степеней
значений тригонометрических функций некоторых углов
планшеты настенные:
o формулы сокращенного умножения
o свойства степеней
свойства логарифмов
o правила и формулы дифференцирования
o формулы первообразных
o формулы тригонометрии
Действующая нормативно-техническая документация:
- правила техники безопасности и производственной санитарии кабинета №210.
- инструкции по проведению экзамена по предмету.
3.2. Информационное обеспечение обучения
(Перечень рекомендуемых учебных изданий, дополнительной
литературы):
а) для учащихся:
16
1. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия:
учебник для студентов профессиональных образовательных организаций,
осваивающих профессии и специальности СПО. – М.,2017
2. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия:
Сборник задач профильной направленности: учеб. пособие для студентов
профессиональных образовательных организаций, осваивающих профессии и
специальности СПО. – М.,2017
3. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия:
Задачник: учеб. пособие для студентов профессиональных образовательных
организаций, осваивающих профессии и специальности СПО. – М.,2017
4. Башмаков М.И. Математика: алгебра и начала математического анализа, §
Предметные результаты освоения учебной дисциплины «Математика» уточняются в
рабочих программах на основе Примерной основной образовательной программы
среднего общего образования с учетом профиля профессионального образования,
осваиваемой профессии ППКРС или специальности ППССЗ. .
5. геометрия: Электронный учеб.- метод. комплекс для студентов профессиональных
образовательных организаций, осваивающих профессии и специальности СПО. –
М.,2017
6. Гусев В.А., Григорьев С.Г., Иволгина С.В. Математика: алгебра и начала
математического анализа, геометрия: учебник для студентов профессиональных
образовательных организаций, осваивающих профессии и специальности СПО. –
М.,2017
б) для преподавателей:
1. Об образовании в Российской Федерации:
федер. закон от 29.12. 2012 № 273-ФЗ (в ред. Федеральных законов от 07.05.2013 №
99-ФЗ, от 07.06.2013 № 120-ФЗ, от 02.07.2013 № 170-ФЗ, от 23.07.2013 № 203-ФЗ,
от 25.11.2013 № 317-ФЗ, от 03.02.2014 № 11-ФЗ, от 03.02.2014 № 15-ФЗ, от
05.05.2014 № 84-ФЗ, от 27.05.2014 № 135-ФЗ, от 04.06.2014 № 148-ФЗ, с изм.,
внесенными Федеральным законом от 04.06.2014 № 145-ФЗ, в ред. от 03.07.2016, с
изм. от 19.12.2016.)
2. Приказ Министерства образования и науки РФ от 31 декабря 2015 г. N 1578 "О
внесении изменений в федеральный государственный образовательный стандарт
среднего общего образования, утвержденный приказом Министерства образования
и науки Российской Федерации от 17 мая 2012 г. N413"
3. Примерная основная образовательная программа среднего общего образования,
одобренная решением федерального учебно-методического объединения по
общему образованию (протокол от 28 июня 2016 г. № 2/16-з).
4. Башмаков М.И., Цыганов Ш.И. Методическое пособие для подготовки к ЕГЭ.–М.,
2014
5. Сборник лучших статей участников Всероссийской научно-методической
конференции "Интерактивные технологии в образовании", 2015 год
6. Сборник лучших уроков и занятий, разработанных по технологии АМО, 2014г
7. Математика. Подготовка к ЕГЭ-2015. Книга 1, Лысенко Ф.Ф., Кулабухова С.Ю.,
Издательство: Легион, 2014
8. Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской
Федерации».
9. Приказ Министерства образования и науки РФ от 17.05.2012 № 413 «Об
утверждении федерального государственного образовательного стандарта среднего
(полного) общего образования».
17
10. Приказ Министерства образования и науки РФ от 29.12.2014 № 1645 «О внесении
изменений в Приказ Министерства образования и науки Российской Федерации от
17.05.2012 № 413 «―Об утверждении федерального государственного
образовательного стандарта среднего(полного) общего образования‖».
11. Письмо Департамента государственной политики в сфере подготовки рабочих
кадров и ДПО Министерства образования и науки РФ от 17.03.2015 № 06-259
«Рекомендации по организации получения среднего общего образования в
пределах освоения образовательных программ среднего профессионального
образования на базе основного общего образования с учетом требований
федеральных государственных образовательных стандартов и получаемой
профессии или специальности среднего профессионального образования».
12. Башмаков М. И. Математика: кн. для преподавателя: метод. пособие. — М., 2013
13. Башмаков М. И., Цыганов Ш. И. Методическое пособие для подготовки к ЕГЭ. —
М., 2014.
4. Контроль и оценка результатов освоения учебной дисциплины
В ходе изучения предмета «Математика " предусматривается организация и
проведение промежуточной аттестации и текущего контроля индивидуальных
образовательных достижений – демонстрируемых обучающимися знаний, умений и
навыков.
Текущий контроль проводится преподавателем в процессе проведения практических
занятий и лабораторных работ, тестирования, а также выполнения обучающимся
индивидуальных заданий, проектов, исследований.
Обучение завершается промежуточной аттестацией в форме экзамена. Формы и
методы текущего контроля самостоятельно разрабатывается преподавателем.
Для промежуточной аттестации и текущего контроля знаний создаются фонды
оценочных средств (ФОС).
Раздел (тема)
Формы и
методы контроля
Характеристика основных видов
деятельности студентов
(на уровне учебных действий)
Раздел 1. Алгебра
Формулировать
Тема 1.1
Реабилитационн
ый курс
основные
тригонометрические тождества;
Применять способы решения линейных и
квадратных уравнений; формулу нахождения
корней квадратного у-я;
обратную теорему к теореме Виета;
применять способы и правила решения
линейных неравенств; метод интервалов;
Способы построения графиков функций;
Свойства линейной и квадратичной функций;
Ознакомление со свойствами степени с
рациональным показателем.
Применение способов решения линейных
и квадратных уравнений;
Применение правил решения линейных и
рациональных неравенств;
Построение
графиков линейной и
квадратичной функций;
Выполнять упражнения с применением
индивидуальные
карточки - задания
карточки –инструкции
справочный материал
контрольные работы
плакаты
18
свойств степеней.
индивидуальные
Тема 1.2.
Показательная
функция
Тема 1.3
Логарифмическа
я функция
Выполнять арифметические действия над карточки-задания:
числами, сочетая устные и письменные практическая
приемы;
работа №1
Ознакомление со свойствами степеней с
действительным показателем;
Ознакомление со свойствами и графиком
показательной функции;
Ознакомление и применение способов
решения показательных уравнений;
Ознакомление и применение способов
решения показательных неравенств;
практическая
работа №2
зачет № 1
зачет № 2
карточки –инструкции
справочный материал
контрольные работы
(дифференцированные
задания)
плакаты
Ознакомление с понятием логарифма;
Основным
логарифмическим
тождеством; понятием десятичного и
натурального логарифмов. Ознакомление Практическая работа:
и применение свойств логарифма;
1, 2, 3 ,4 по
Применение формулы перехода то индивидуальным
одного основания логарифма другому
карточкам - заданиям
Ознакомление
с
определением
логарифмической
функции
и
еѐѐ зачет 1, 2
свойствами ,
карточки –
Ознакомление
с
понятием
о инструкции
равносильности уравнений;
Ознакомление со способами решения
логарифмических уравнений и неравенств; справочный материал
Находить значения логарифмов;
Применять свойства логарифмов;
контрольные работы
Применять основное логарифмическое (дифференцированные
тождество;
задания)
Строить
график
логарифмической плакаты
функции;
Применять свойства логарифмической
функции при решении логарифмических
неравенств;
Решать логарифмические уравнения;
Ознакомление с:
1. Радианной
мерой угла и
вращательным движением.
2. Синусом, косинусом, тангенсом и
котангенсом числа.
Практическая
3. Основными тригонометрическими работа №1, №2, №3,
тождествами,
формулами №4
приведения. Синусом, косинусом
19
и тангенсом суммы и разности
двух углов.
4. Синусом и косинусом двойного
угла. Преобразованием суммы
Тригонометричес
тригонометрических функций в
кие
произведение и произведения в
формулы
сумму.
5. Преобразованием
простейших
тригонометрических выражений.
Преобразовывать радианную меру угла в
градусную.
Находить в тригонометрическом круге
указанный угол.
Вычислять значение тригонометрических
функций.
Выполнять простейшие тождественные
преобразования по формулам.
Применять формулы приведения для
вычисления.
Пользоваться
формулами
синуса,
косинуса и тангенса двойного угла,
половинного угла.
Тема 1.4
индивидуальные
карточки-задания
карточки –
инструкции
справочный материал
контрольные работы
плакаты
Ознакомление с понятием арксинуса
Тема 1.5
Тригонометричес числа, арккосинуса числа, арктангенса
числа;
кие уравнения
Ознакомление с формулами решения
простейших
тригонометрических
уравнений вида: Sinx = а, Сosx = а, tgx =
a, ctgx = a;
Ознакомление со способами решения
тригонометрических
уравнений,
сводящихся к квадратным; однородных
тригонометрических
уравнений;
тригонометрических
уравнений,
решаемых разложением левой части на
множители.
Практическая
работа №1, №2, №3,
№4, №5, №6
индивидуальные
карточки-задания
карточки –инструкции
справочный материал
Применять
формулы
решения
простейших
тригонометрических контрольные работы
уравнений;
Решать
различными
способами плакаты
тригонометрические
уравнения
и
неравенства.
Тема 1.6
Формулировать и понимать весь
перечисленный выше материал раздела 1. индивидуальные
карточки-задания
20
Итоговое
повторение
карточки –инструкции
Пользоваться полученными знаниями справочный материал
при решении стандартных заданий и тесты
заданий более повышенного уровня.
контрольная работа
(итоговая)
плакаты
Раздел 2.
Начала анализа
Тема 2.1
Производная
Тема2.2
Интеграл
Ознакомление с:
1. Понятием производной
2. Правилами дифференцирования
3. Формулами производной степенной
функции, производных некоторых
элементарных функций,
4. производной сложной функции;
5. Геометрическим
смыслом
производной;
6. Механическим
смыслом
производной;
7. Определением стационарных точек;
8. Теоремами:
о возрастании и убывании функции,
об экстремумах функции.
9. Применений
производной
к
исследованию
функций
и
построению графиков.
10. Наибольшее и наименьшее значение
функции
Находить
производные
всех
элементарных функций;
Находить
угловой
коэффициент
касательной;
Находить
скорость
движения
материальной точки;
Находить стационарные точки;
Находить интервалы возрастания и
убывания функции;
Находить экстремумы функции;
Находить наибольшее и наименьшее
значения функции;
Исследовать функцию и строить еѐ
график;
Ознакомление с :
1.
Понятием первообразной
функции;
2.
Правилами нахождения
первообразной;
3.
Понятием интеграла;
4.
Формулой Ньютона-Лейбница;
5.
Формулой вычисления площади
Практическая
работа №1, №2, №3,
№4, №5, №6, №7
индивидуальные
карточки-задания
карточки –инструкции
справочный материал
контрольные работы
плакаты
карточки –инструкции
справочный материал
карточки –инструкции
справочный материал
контрольные работы
плакаты
Практическая
работа №1, №2, №3
индивидуальные
карточки-задания
21
криволинейной трапеции.
Находить первообразную;
карточки –инструкции
Вычислять интегралы;
Вычислять площадь фигуры с помощью справочный материал
интегралов.
контрольные работы
плакаты
Тема2.3
Итоговое
повторение
Понимать и формулировать весь Тесты по теории
материал разделов 1 и 2.
Индивидуальные
Выполнять
все
упражнения, задания для
перечисленные во всех темах программы. самостоятельной
подготовки к экзамену
Предэкзаменационная
контрольная работа
Оценка индивидуальных достижений
К методам контроля относятся:
устный контроль – индивидуальный и фронтальный опрос;
письменный контроль
проведение письменных (15 – 20 мин) и контрольных работ;
самоконтроль;
лабораторный контроль;
взаимоконтроль в парах.
Для оценивания знаний обучающихся применяется традиционная
оценивания от 1 до 5 баллов.
система
Все самостоятельные и контрольные работы многовариантны и в них предоставлен
выбор варианта на усмотрение обучающегося. Задания подобраны с учетом обязательного
минимума (базовый уровень) знаний учащихся.
Критерии оценок:
Ответ оценивается отметкой «5», если:
1. работа выполнена полностью;
2. в логических рассуждениях и обосновании решения нет пробелов и
ошибок;
3. в решении нет математических ошибок (возможна одна неточность, описка,
которая не является следствием незнания или непонимания учебного
материала).
Отметка «4» ставится в следующих случаях:
1. работа выполнена полностью, но обоснования шагов решения
недостаточны (если умение обосновывать рассуждения не являлось
специальным объектом проверки);
2. допущены одна ошибка или есть два – три недочѐта в выкладках, рисунках,
чертежах или графиках (если эти виды работ не являлись специальным
объектом проверки).
22
Отметка «3» ставится, если:
1. допущено более одной ошибки или более двух – трех недочетов в
выкладках, чертежах или графиках, но обучающийся обладает
обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
1. допущены существенные ошибки, показавшие, что обучающийся не
обладает обязательными умениями по данной теме в полной мере.
Общая классификация ошибок
При оценке знаний, умений и навыков учащихся следует учитывать все ошибки (грубые и
негрубые) и недочѐты.
3.1. Грубыми считаются ошибки:
незнание определения основных понятий, законов, правил, основных положений
теории, незнание формул, общепринятых символов обозначений величин, единиц их
измерения;
незнание наименований единиц измерения;
неумение выделить в ответе главное;
неумение применять знания, алгоритмы для решения задач;
неумение делать выводы и обобщения;
неумение читать и строить графики;
неумение пользоваться первоисточниками, учебником и справочниками;
потеря корня или сохранение постороннего корня;
отбрасывание без объяснений одного из них;
равнозначные им ошибки;
вычислительные ошибки, если они не являются опиской;
логические ошибки.
3.2. К негрубым ошибкам следует отнести:
неточность формулировок, определений, понятий, теорий, вызванная неполнотой
охвата основных признаков определяемого понятия или заменой одного - двух из этих
признаков второстепенными;
неточность графика;
нерациональный метод решения задачи или недостаточно продуманный план
ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
нерациональные методы работы со справочной и другой литературой;
неумение решать задачи, выполнять задания в общем виде.
3.3. Недочетами являются:
нерациональные приемы вычислений и преобразований;
небрежное выполнение записей, чертежей, схем, графиков;
описки, недостаточность или отсутствие объяснений, обоснований ответов, если
одна и та же ошибка встречается несколько раз, то она рассматривается как одна ошибка
или один недочет.
Примерные темы для исследовательских и лабораторных работ
Нестандартные способы решения квадратных уравнений
23
Математические софизмы
Применение сложных процентов в экономических расчетах
Сложение гармонических колебаний
Графическое решение уравнений и неравенств
Конические сечения и их применение в технике
Схемы Бернулли повторных испытаний
Исследование уравнений и неравенств с параметром
Интернет-ресурсы для студентов:
1. http://www.egesdam.ru/page270.php решение показательных уравнений.
2. http://ege-ok.ru/2012/02/09/reshenie-pokazatelnyih-neravenstv/ решение показательных
неравенств.
3. http://www.egesdam.ru/page290.php логарифмические уравнения
4. http://ru.solverbook.com/primery-reshenij/primery-resheniya-logarifmicheskix-neravenstv/
логарифмические неравенства.
5. http://ru.solverbook.com/primery-reshenij/primery-resheniya-trigonometricheskix-uravnenij/
тригонометрические уравнения
6. Ященко И. В., Захаров П. И. ЕГЭ 2011. Математика. Задача В8. Геометрический смысл
производной. Рабочая тетрадь / Под ред. А. Л. Семенова и И. В. Ященко. — М.:
МЦНМО, 2011. — 88 с. ISBN 978-5-94057-658-7
Скачать (976.07 кб, djvu/rar) ifolder.ru || mediafire.com
2. Структура и содержание учебной дисциплины «Математика»
2.1 Структура и содержание учебной дисциплины
Прямые и плоскости в пространстве
Взаимное расположение двух прямых в пространстве. Параллельность прямой и
плоскости. Параллельность плоскостей. Перпендикулярность прямой и плоскости.
Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Угол
между плоскостями. Перпендикулярность двух плоскостей.
Геометрические преобразования пространства: параллельный перенос, симметрия
относительно плоскости.
Параллельное проектирование. Площадь ортогональной проекции. Изображение
пространственных фигур.
Многогранники
Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые
многогранники. Теорема Эйлера.
Призма. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.
Пирамида. Правильная пирамида. Усеченная пирамида. Тетраэдр.
Симметрии в кубе, в параллелепипеде, в призме и пирамиде.
Сечения куба, призмы и пирамиды.
Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и
икосаэдр)
Тела и поверхности вращения
Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность,
образующая, развертка. Осевые сечения и сечения, параллельные основанию.
Шар и сфера, их сечения. Касательная плоскость к сфере.
Измерения в геометрии
Объем и его измерение. Интегральная формула объема.
24
Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы
объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса.
Формулы объема шара и площади сферы.
Подобие тел. Отношения площадей поверхностей и объемов подобных тел.
Координаты и векторы
Прямоугольная (декартова) система координат в пространстве. Формула расстояния
между двумя точками. Уравнения сферы, плоскости и прямой.
Векторы. Модуль вектора. Равенство векторов. Сложение векторов. Умножение вектора
на число. Разложение вектора по направлениям. Угол между двумя векторами. Проекция
вектора на ось. Координаты вектора. Скалярное произведение векторов.
Использование координат и векторов при решении математических и прикладных задач.
Распределение часов Математики по курсам:
I Курс
Общее
количество
часов
160
Алгебра
80
Геометрия
80
II курс
Общее
количество
часов
125
Алгебра
95
Геометрия
30
2.2. Объѐм учебной дисциплины и виды учебной работы раздела II Математика:
«Геометрия»
Вид учебной работы
Максимальная учебная нагрузка (всего)
Обязательная аудиторная учебная нагрузка (всего)
в том числе:
практические занятия
Практические работы
лекции
контрольные работы
Количество
часов
165
110
68
5
30
7
Итоговая оценка выставляется в аттестат по итогам сдачи экзамена в ходе
прохождения промежуточной аттестации.
2.3 Тематический план и содержание учебной дисциплины «Математика», раздел
2 «Геометрия»
Общее количество
часов
I Курс
II Курс
25
110
80
30
Перспективно – тематический план Математика: «Геометрия»
№
1
2
3
4
5
Всего
№
1
2
Изучаемая тема I курса
Параллельность в пространстве
Перпендикулярность в пространстве
Многогранники
Векторы в пространстве
Метод координат в пространстве
Кол.часов
20
20
20
8
12
80
Изучаемая тема IIкурса
Тела вращения
Объѐмы тел
Всего часов
Кол.часов
14
16
30
Наименование
разделов и тем
1
Раздел II
Тема 1.1.
Параллельность в
пространстве.
Содержание учебного материала, лабораторные и Количест
практические работы, самостоятельная работа
во
обучающихся.
часов
2
3
(название)
Введение. Предмет стереометрии
Аксиомы стереометрии
Некоторые следствия из аксиом
Скрещивающиеся прямые
Параллельные прямые
20
Угол между скрещивающимися прямыми
Решение задач
Признак параллельности прямой и плоскости
Решение задач
Контрольная работа
Параллельность плоскостей в пространстве
Свойства параллельных плоскостей
Тетраэдр
Параллелепипед
Задачи на сечение многогранников
Решение задач
Контрольная работа
26
Тема 1.3
Перпендикулярность
в пространстве.
Тема 1.4
Многогранники.
Тема 1.5
Векторы в
пространстве
Тема 1.6
Метод координат в
пространстве.
Тема 1.7
Тела вращения.
Перпендикулярные прямые в пространстве.
Параллельные прямые, перпендикулярные к
плоскости.
Признак перпендикулярности прямой и пл-ти
Решение задач.
Расстояние от точки до плоскости.
Теорема о трѐх перпендикулярах.
Угол между прямой и плоскостью
Решение задач.
Двугранный угол
Признак перпендикулярности двух плоскостей
Прямоугольный параллелепипед
Решение задач
Контрольная работа
Понятие многогранника. Призма.
Площадь поверхности призмы
Практическая работа
Пирамида
Площадь поверхности пирамиды
Практическая работа
Правильные многогранники
Решение задач
Контрольная работа
Понятие вектора в пространстве.
Действия над векторами.
Компланарные векторы.
Разложение вектора по трем некомпланарным
векторам.
Решение задач.
Практическая работа
Прямоугольная система координат
Координаты вектора
Вычисление координат вектора по координатам
начала и конца
Простейшие задачи в координатах
Скалярное умножение векторов в пространстве
Решение задач
Контрольная работа
Цилиндр
Площадь поверхности цилиндра
Задачи на сечение цилиндра
Конус
Площадь поверхности конуса
Решение задач
Практическая работа
Сфера и шар
Взаимное расположение сферы и плоскости
Решение задачи
Контрольная работа
20
20
8
12
14
27
Тема 1.8
Объѐмы.
Объѐм тела. Объѐм параллелепипеда
Объѐм призмы
Объѐм цилиндра
Практическая работа
Объѐм пирамиды
Объѐм конуса
Практическая работа
Решение задач
Контрольная работа
16
Раздел 2. Геометрия.
Тема №1: «Параллельность прямых и плоскостей» (20 часов)
1. Введение. Предмет стереометрии.
2. Аксиомы стереометрии.
3. Некоторые следствия из аксиом.
4. Параллельные прямые в пространстве.
5. Скрещивающиеся прямые.
6. Угол между скрещивающимися прямыми.
7. Решение задач.
8. Практическая работа № 1 (решение задач).
9. Признак параллельности прямой и плоскости.
10. Решение задач.
11. Решение задач
12. Практическая работа №2 (решение задач).
13. Параллельность плоскостей.
14. Решение задач.
15. Решение задач.
16. Практическая работа №3 (решение задач).
17. Тетраэдр.
18. Параллелепипед.
19. Повторение материала.
20. Контрольная работа № 1.
Тема №2: «Перпендикулярность прямых и плоскостей» (20 часов)
21. Повторение.
22. Перпендикулярные прямые в пространстве.
23. Параллельные прямые, перпендикулярные к плоскости.
24. Признак перпендикулярности прямой и плоскости.
25. Решение задач.
26. Практическая работа №1 (решение задач).
27. Расстояние от точки до плоскости.
28. Решение задач.
29. Решение задач.
30. Практическая работа № 2 (решение задач).
31. Теорема о трех перпендикулярах
32. Теорема о трех перпендикулярах
33. Решение задач.
34. Решение задач.
35. Решение задач.
36. Практическая работа №3 (решение задач).
37. Прямоугольный параллелепипед.
28
38. Решение задач.
39. Решение задач.
40. Контрольная работа № 2.
Тема №3: «Многогранники» (20 часов)
41. Понятие многогранника.
42. Призма.
43. Площадь поверхности призмы.
44. Решение задач.
45. Решение задач.
46. Решение задач.
47. Решение задач.
48. Практическая работа №1 Вычисление площади поверхности призмы.
49. Пирамида.
50. Площадь поверхности пирамиды.
51. Решение задач.
52. Решение задач.
53. Решение задач.
54. Практическая работа №2. Вычисление площади поверхности пирамиды.
55. Правильные многогранники.
56. Решение задач.
57. Повторение.
58. Повторение.
59. Контрольная работа № 3.
60. Работа над ошибками.
Тема № 4: «Векторы в пространстве» (6 часов)
61. Понятие вектора в пространстве.
62. Действия над векторами.
63. Компланарные векторы.
64. Разложение вектора по трем некомпланарным векторам.
65. Решение задач.
66. Практическая работа №1 (решение задач).
Тема №5: «Метод координат в пространстве» (14 часов)
67. Прямоугольная система координат в пространстве.
68. Координаты вектора.
69. Вычисление координат вектора по координатам его начала и конца.
70. Практическая работа №2 (решение задач).
71. Простейшие задачи в координатах.
72. Простейшие задачи в координатах.
73. Решение задач.
74. Практическая работа № 3 (решение задач)
75. Скалярное умножение векторов.
76. Скалярное умножение в координатах.
77. Решение задач.
78. Решение задач.
79. Контрольная работа № 4
80. Заключительный урок.
29
Геометрия II курс (30 часов)
Тема №1: «Тела вращения» (14 часов)
1. Понятие цилиндра.
2. Площадь поверхности цилиндра.
3. Задачи на сечение цилиндра.
4. Решение задач.
5. Решение задач.
6. Практическая работа № 1 (решение задач)
7. Конус.
8. Площадь поверхности конуса.
9. Практическая работа №2 (решение задач)
10. Практическая работа № 1 Вычисление Площади поверхности цилиндра и конуса.
11. Сфера и шар
12. Взаимное расположение шара и плоскости.
13. Решение задач.
14. Контрольная работа № 1.
Тема № 3: «Объемы тел» (16 часов)
15. Понятие объѐма.
16. Объѐм параллелепипеда.
17. Объѐм призмы.
18. Задачи на вычисление объѐма призмы.
19. Объѐм цилиндра.
20. Практическая работа № 2. Вычисление объѐма призмы и цилиндра.
21. Объѐм пирамиды.
22. Решение задач.
23. Решение задач.
24. Решение задач.
25. Объѐм конуса.
26. Практическая работа № 3. Вычисление объѐма пирамиды и конуса.
27. Решение задач.
28. Контрольная работа № 3.
29. Работа над ошибками.
30. Заключительный урок.
3. Условия реализации программы учебной дисциплины
3.1. Требования к материально-техническому обеспечению
Реализация программы учебной дисциплины требует наличия учебного кабинета.
Оборудование учебного кабинета:
- посадочных мест – 30
- стульев – 30
- доска классная – 2
- учебники Атанасян Л.С. и др. Геометрия. 10 (11) кл. – М., 2000.
-источник водоснабжения
Приборы и устройства:
- набор моделей «Призмы»
- набор моделей «Пирамиды»
- набор моделей «Цилиндры»
- набор моделей «Конусы»
30
- набор комбинированных моделей
Учебные наглядные пособия:
- таблицы:
квадратов
степеней
значений тригонометрических функций некоторых углов
- планшеты настенные:
формулы тригонометрии
геометрические фигуры
геометрические тела
Действующая нормативно-техническая документация:
- правила техники безопасности и производственной санитарии кабинета №210.
- инструкции по проведению экзамена по предмету.
3.2. Информационное обеспечение обучения
Геометрия
(Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной
литературы):
а) для учащихся:
1 Атанасян Л.С. и др. Геометрия. 10 (11) кл. – М., 2017
2. ЕГЭ 2019. Математика. Геометрия. Стереометрия. В. А. Смирнов , Серия - ЕГЭ
2019 Математика. Год издания – 2019
б) для преподавателей
Геометрия 10-11 кл. Методические рекомендации для учителя часть 1 и 2я
1.
Изучение геометрии, 10-11 класс, Книга для учителя, Саакян С.М., Бутузов В.Ф.,
2015.
2.
Приказ Министерства образования и науки РФ от 29.12.2014 № 1645 «О внесении
изменений в Приказ Министерства образования и науки Российской Федерации от 17.05.2012
№ 413 «―Об утверждении федерального государственного образовательного стандарта
среднего(полного) общего образования‖».
3.
Письмо Департамента государственной политики в сфере подготовки рабочих
кадров
4.
и ДПО Министерства образования и науки РФ от 17.03.2015 № 06-259
«Рекомендации по организации получения среднего общего образования в пределах освоения
образовательных программ среднего профессионального образования на базе основного общего
образования с учетом требований федеральных государственных образовательных стандартов и
получаемой профессии или специальности среднего профессионального образования».
5.
Башмаков М. И. Математика: кн. для преподавателя: метод. пособие. — М., 2017
6.
Башмаков М. И., Цыганов Ш. И. Методическое пособие для подготовки к ЕГЭ. —
М., 2016
Интернет ресурсы для студентов:
1. http://5terka.com/node/7003 решебник по геометрии авт. Атанасян Л. С. 10- 11
31
4. Контроль и оценка результатов освоения учебной дисциплины
В ходе изучения предмета "Геометрия" предусматривается организация и
проведение промежуточной аттестации и текущего контроля индивидуальных
образовательных достижений – демонстрируемых обучающимися знаний, умений и
навыков.
Текущий контроль проводится преподавателем в процессе проведения практических
занятий и лабораторных работ, тестирования, а также выполнения обучающимся
индивидуальных заданий, проектов, исследований.
Обучение завершается выставлением оценки по итогам успеваемости обучающихся.
Формы и методы текущего контроля самостоятельно разрабатывается преподавателем.
Для промежуточной аттестации и текущего контроля знаний создаются фонды
оценочных средств (ФОС).
Раздел (тема)
Тема 1.1.
Параллельность в
пространстве
Характеристика основных видов
деятельности студентов
(на уровне учебных действий)
Формы и
методы контроля
Ознакомление с:
1. предметом стереометрии;
2. Аксиомами стереометрии;
3. Некоторыми следствиями из
аксиом;
4. Определением и признаком
скрещивающихся прямых;
5. Определением параллельных
прямых в пр-ве;
6. Понятием угла между
скрещивающимися прямыми;
7. Признаком параллельности прямой
и плоскости;
8. Признаком параллельности
плоскостей в пространстве;
9. Свойствами параллельных
плоскостей;
10. Определением тетраэдра;
11. Опр-ем параллелепипеда.
Практическая
работа №1, №2
Действия:
- использовать новую терминологию
темы
- определять взаимное расположение
прямых и плоскостей в пр-ве
- выполнять задачи на сечение
тетраэдра и параллелепипеда
- применять определения, аксиомы и
признаки темы при решении задач
- оценивать правильность
выполняемых решений
- проводить анализ решения задач
индивидуальная
карточка-задание
тесты
карточки-задания
контрольных работ
Практическая
работа
№1, №2
индивидуальная
карточка-задание
тесты
карточки-задания
контрольных работ
Ознакомление с :
32
Тема 1.2
Перпендикулярность
в пространстве.
1. Опр. перпендикулярных прямых в
пространстве.
2. Теоремой о параллельных прямых,
перпендикулярных к плоскости.
3. Признаком перпендикулярности
прямой и плоскости.
4. Понятием расстояния от точки до
плоскости.
5. Теорему о трѐх перпендикулярах.
6. Опр. угла между прямой и
плоскостью
7. Признак перпендикулярности двух
плоскостей
8. Понятие прямоугольного
параллелепипеда
Действия:
- использовать правильно новую
терминологию
- определять взаимное расположение
прямых и плоскостей в пространстве
- выполнять рисунки
- применять определения и теоремы к
решению задач
- оценивать правильность вычислений
- проводить соответствие с
окружающей обстановкой
расположение прямых и плоскостей
Практическая
работа №1, №2, №3
индивидуальная
карточка-задание
карточки-задания
контрольных работ
практическая работа
№1 и №2
индивидуальная
карточка-задание
Многогранники.
Ознакомление и понимание:
1. Понятия многогранника.
Определения призмы. Формулами
площади поверхности призмы
2. Определением пирамиды,
формулами площади поверхности
пирамиды.
3. Понятием правильного
многогранника
Изготовление моделей
призм, пирамид,
правильных
многогранников.
Тема 1.4
Векторы в
Действия:
- использовать формулы для
вычисления площадей поверхности
призмы и пирамиды;
- определять виды многогранников;
- выполнять практические работы;
- применять новую терминологию и
формулы
- оценивать речь других студентов;
- проводить анализ решения задач
Ознакомление и понимание с:
1. Понятием вектора в пространстве.
2. Действиями над векторами.
3. Компланарными векторами.
Тема 1.3
-тесты
- карточки-задания
контрольных работ
индивидуальные
карточки-задания
33
пространстве
Тема 1.5
Метод координат в
пространстве.
Тема 1.5
Тела вращения.
4. Разложения вектора по трем
некомпланарным векторам.
Действия:
- использовать новую терминологию;
- выполнять решение задачи на
применение изученных формул;
- оценивать правильность решения
задач
- оценивать правильность решения
задач
- проводить анализ выбранного
решения
Ознакомление и понимание:
1. Прямоугольную
систему
координат;
2. Координаты вектора;
3. Формулы:
о вычислении координат вектора по
координатам начала и конца;
координаты середины отрезка
длина вектора
длина отрезка
4. Определение
скалярного
умножения векторов в пространстве.
5. Формулу скалярного умножения
векторов в координатах.
Действия:
- использовать новую терминологию;
- определять координаты вектора;
- выполнять решение задачи на
применение изученных формул;
-применять векторный метод к
решению задач
- оценивать правильность решения
задач
- проводить анализ выбранного
решения
Практическая
работа №1, №2
Ознакомление и понимание:
практическая работа
№1
1. Определение цилиндра, формулу
2. площади поверхности цилиндра,
осевое сечение цилиндра.
3. Определение конуса,
4. Формулу площади поверхности
конуса;
5. Определение сферы и шара
6. Теорему о взаимном расположении
сферы и плоскости.
Действия :
индивидуальные
карточки-задания
карточки-задания
контрольных работ
тест по теории
тест по решению
задач
индивидуальная
карточка-задание
тест по теории
карточки-задания
контрольных работ
34
- использовать новую терминологию,
- определять все тела вращения и их
элементы,
- выполнять решение задач на сечение
цилиндра,
- применять формулы вычисления
площадей тел вращения;
- оценивать полученные результаты;
- проводить анализ формулировки
предложенных задач;
Ознакомление и понимание:
Тема 1.6
Объѐмы.
изготовление моделей
тел вращения.
Практическая
работа по
1. Понятие объѐма тел. Формулы
изготовлению
объѐма параллелепипеда разного вида; моделей
2. Формулы объѐма:
3. призмы, пирамиды,
практическая работа
4. цилиндра, конуса
№1 и №2
Действия:
- использовать новую терминологию;
индивидуальная
- определять все тела вращения и их
карточка-задание
элементы;
- выполнять рисунки всех тел
вращения;
- применять формулы вычисления
объемов тел вращения;
- оценивать выполнение практических карточки-задания
работ по вычислению объѐма
контрольных работ
геометрических тел
- проводить анализ текста задач по
данной теме.
Оценка индивидуальных достижений.
Оценка устных ответов, обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и
учебником;
- изложил материал грамотным языком, точно используя математическую
терминологию и символику, в определенной логической последовательности;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теорию конкретными примерами, применять ее в
новой ситуации при выполнении практического задания;
- продемонстрировал знание теории ранее изученных сопутствующих тем,
сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно, без наводящих вопросов учителя;
- возможны одна – две неточности при освещение второстепенных вопросов или в
выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям
на оценку «5», но при этом имеет один из недостатков:
35
- в изложении допущены небольшие пробелы, не исказившее математическое
содержание ответа;
- допущены один – два недочета при освещении основного содержания ответа,
исправленные после замечания учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных
вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
- неполно раскрыто содержание материала (содержание изложено фрагментарно, не
всегда последовательно), но показано общее понимание вопроса и продемонстрированы
умения, достаточные для усвоения программного материала (определены «Требованиями
к математической подготовке учащихся» в настоящей программе по математике);
- имелись затруднения или допущены ошибки в определении математической
терминологии, чертежах, выкладках, исправленные после нескольких наводящих
вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении
практического задания, но выполнил задания обязательного уровня сложности по данной
теме;
- при достаточном знании теоретического материала выявлена недостаточная
сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание учеником большей или наиболее важной части учебного
материала;
- допущены ошибки в определении понятий, при использовании математической
терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены
после нескольких наводящих вопросов учителя.
Примерные темы для исследовательских и лабораторных работ:
1. Геометрия Лобачевского.
2. Правильные и полуправильные многогранники.
3. Загадки пирамиды.
4. Золотое сечение.
5. Симметрия в природе.
6. Лист Мѐбиуса.
7. Классификация многогранников.
8. Классификация тел вращения.
9. Геометрия и архитектура.
10. Параллельное проектирование.
11. Векторное задание прямых и плоскостей в пространстве.
36